domingo, 18 de noviembre de 2018

RAYOS X

Posted by Sección 6 On noviembre 18, 2018
Los rayos X

Son una radiación electromagnética de la misma naturaleza que las ondas de radio, las ondas de microondas, los rayos infrarrojos, la luz visible, los rayos ultravioleta y los rayos gamma. La diferencia fundamental con los rayos gamma es su origen: los rayos gamma son radiaciones de origen nuclear que se producen por la des excitación de un nucleón de un nivel excitado a otro de menor energía y en la desintegración de isotopos radiactivos, mientras que los rayos X surgen de fenómenos extra nucleares, a nivel de la órbita electrónica, fundamentalmente producidos por desaceleración de electrones. La energía de los rayos X en general se encuentra entre la radiación ultravioleta y los rayos gamma producidos naturalmente. Los rayos X son una radiación ionizante porque al interactuar con la materia produce la ionización de los átomos de la misma, es decir, origina partículas con carga (iones).

Evolución

  • 1895: Descubrimiento de los rayos X

 En este año nacieron los denominados rayos x, el alemán Conrad Rontgen, un físico que de forma accidental estaba haciendo experimentos usando tubos de Crookes y se dio cuenta que unos raros rayos estaban atravesando el papel y también el metal. Esto provocó en él una profunda investigación durante muchas semanas.

Lo que observó entonces fue que tras cubrir el tubo de Crookes con un cartón negro con la finalidad de eliminar la luz visible, se dio cuenta que un aparente resplandor amarillo-verdoso que provenía de una pantalla de una capa de platino desaparecía al apagar el tubo.

Esto le hizo determinar que los rayos estaban creando una radiación muy penetrante pero no visible, pues atravesaban gruesos espesores de papel o hasta metales poco densos.

Para demostrar el descubrimiento, comenzó a usar unas placas fotográficas para demostrando que los objetos podían ser más o menos transparentes a los rayos X y que a su vez podía depender del espesor del objeto, lo cual le llevó a realizar las primeras radiografías humanas usando la mano de su mujer. Mano que se puede apreciar en esta infografía.

  • 1904: Claurence Dally muere debido a la exposición a la radiación.

Durante los primeros años del siglo 20 Claurence Dally comenzó a experimentar lesiones debido a la radiación que estaban sufriendo sus manos. Esto dio lugar a que en el año 1094 muriese después de tener que abandonar su trabajo con Edison.

La lesión que le había provocado la radiación en su mano izquierda no fue tratada de manera satisfactoria, pues se le realizaron varios injertos de piel y finalmente tuvieron que amputarle la mano izquierda. Posteriormente sufrió la aparición de una úlcera en su mano derecha obligándolo también a sufrir una amputación de cuatro dedos de dicha mano.

  •  1904: John Ambrose Fleming inventó  la válvula termoiónica, el primer tubo de vacío.

Este descubrimiento fue motivado por la colocación dentro de una bombilla incandescente, un electrodo algo alejado del filamento, con el cual se establecía una corriente entre el filamento y ese electrodo.

  •  1913: William  D. Coolidge inventa el tubo de tungsteno

Un empleado de la compañía General Electric, descubrió del tubo de tungsteno al alto vacío con energía estable y reproducible.

  •  1920: trajo nuevas medidas de seguridad que permitieron el uso generalizado de los rayos X

Por último en la infografía se muestra como se monitorizan en la actualidad los estudios de placas realizados por los técnicos en imagen para el diagnóstico.

Aplicaciones

Médicas
Desde que Röntgen descubrió que los rayos X permiten captar estructuras óseas, se ha desarrollado la tecnología necesaria para su uso en medicina. La radiología es la especialidad médica que emplea la radiografía como ayuda en el diagnóstico médico, en la práctica, el uso más extendido de los rayos X.

Los rayos X son especialmente útiles en la detección de enfermedades del esqueleto, aunque también se utilizan para diagnosticar enfermedades de los tejidos blandos, como la neumonía, cáncer de pulmón, edema pulmonar, abscesos.

En otros casos, el uso de rayos X tiene más limitaciones, como por ejemplo en la observación del cerebro o los músculos. Las alternativas en estos casos incluyen la tomografía axial computarizada, la resonancia magnética nuclear o los ultrasonidos.

Los rayos X también se usan en procedimientos en tiempo real, tales como la angiografía, o en estudios de contraste.

Otras
Figuras de una tetera marroquí metálica, y hebillas de una mochila, en la pantalla de un detector de rayos X, para inspección de equipaje de mano.
Los rayos X pueden ser utilizados para explorar la estructura de la materia cristalina mediante experimentos de difracción de rayos X por ser su longitud de onda similar a la distancia entre los átomos de la red cristalina. La difracción de rayos X es una de las herramientas más útiles en el campo de la cristalografía.

También puede utilizarse para determinar defectos en componentes técnicos, como tuberías, turbinas, motores, paredes, vigas, y en general casi cualquier elemento estructural. Aprovechando la característica de absorción/transmisión de los Rayos X, si aplicamos una fuente de Rayos X a uno de estos elementos, y este es completamente perfecto, el patrón de absorción/transmisión, será el mismo a lo largo de todo el componente, pero si tenemos defectos, tales como poros, pérdidas de espesor, fisuras (no suelen ser fácilmente detectables), inclusiones de material tendremos un patrón desigual.

Esta posibilidad permite tratar con todo tipo de materiales, incluso con compuestos, remitiéndonos a las fórmulas que tratan el coeficiente de absorción másico. La única limitación reside en la densidad del material a examinar. Para materiales más densos que el plomo no vamos a tener transmisión. Los rayos X pueden ser utilizados para explorar la estructura de la materia cristalina mediante experimentos de difracción de rayos X por ser su longitud de onda similar a la distancia entre los átomos de la red cristalina. La difracción de rayos X es una de las herramientas más útiles en el campo de la cristalografía.

Categories:

0 comentarios:

Publicar un comentario